Cancer metastasis-suppressing peptide metastin upregulates excitatory synaptic transmission in hippocampal dentate granule cells.
نویسندگان
چکیده
Metastin is an antimetastatic peptide encoded by the KiSS-1 gene in cancer cells. Recent studies found that metastin is a ligand for the orphan G-protein-coupled receptor GPR54, which is highly expressed in specific brain regions such as the hypothalamus and parts of the hippocampus. This study shows that activation of GPR54 by submicromolar concentrations of metastin reversibly enhances excitatory synaptic transmission in hippocampal dentate granule cells in a mitogen-activated protein (MAP) kinase-dependent manner. Synaptic enhancement by metastin was suppressed by intracellular application of the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA. Analysis of miniature excitatory postsynaptic currents (mEPSCs) revealed an increase in the mean amplitude but no change in event frequency. This indicates that GPR54 and the mechanism responsible for the increase in EPSCs are postsynaptic. Metastin-induced synaptic potentiation was abolished by 50 microM PD98059 and 20 microM U0126, two inhibitors of the MAP kinases ERK1 and ERK2. The effect was also blocked by inhibitors of calcium/calmodulin-dependent kinases and tyrosine kinases. RT-PCR experiments showed that both KiSS-1 and GPR54 are expressed in the hippocampal dentate gyrus. Metastin is thus a novel endogenous factor that modulates synaptic excitability in the dentate gyrus through mechanisms involving MAP kinases, which in turn may be controlled upstream by calcium-activated kinases and tyrosine kinases.
منابع مشابه
Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.
Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in l...
متن کاملDifferential regulation of synaptic inputs to dentate hilar border interneurons by metabotropic glutamate receptors.
Regulation of synaptic transmission by metabotropic glutamate receptors (mGluRs) was examined at two excitatory inputs to interneurons with cell bodies at the granule cell-hilus border in hippocampal slices taken from neonatal rats. Subgroup-selective mGluR agonists altered the reliability, or probability of transmitter release, of evoked minimal excitatory synaptic inputs and decreased the amp...
متن کاملPKA and PKC enhance excitatory synaptic transmission in human dentate gyrus.
cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) are two major modulators of synaptic transmission in the CNS but little is known about how they affect synaptic transmission in the human CNS. In this study, we used forskolin, a PKA activator, and phorbol ester, a PKC activator, to examine the effects of these kinases on synaptic transmission in granule cells of the dentate gyrus i...
متن کاملEffect of Clenbuterol Administration into the Basolateral Amygdala on Synaptic Plasticity in Dentate Gyrus Granule Cells in Male Rats
Background and purpose: Neural circuits and neurotransmitter systems within the basolateral amygdala (BLA) play roles in forming emotional memory through communication with the hippocampus. Therefore, in this study, the role of these neural circuits on synaptic plasticity was investigated by agonist injection of beta-adrenergic receptors into the BLA. Materials and methods: In this experiment...
متن کاملMorphine augments excitatory synaptic transmission in the dentate gyrus through GABAergic disinhibition.
The present study investigated the effect of morphine on synaptic transmission and long-term potentiation (LTP) in the dentate gyrus using rat hippocampal slice preparations. Field excitatory postsynaptic potential (fEPSP) and population spike (PS), evoked by stimulation of the perforant path, were recorded from the dentate molecular layer and the stratum granulosum, respectively. Following app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 5 شماره
صفحات -
تاریخ انتشار 2005